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Post-harvest diseases are a major contributor to global food losses, accounting for 20-50% of
perishable crops, thereby threatening food security and economic stability. Traditional
disease detection methods, such as visual inspection and microbiological culturing, are often
slow, subjective, and lack the sensitivity needed for early pathogen identification. Recent
advancements in biotechnology and computational analytics have introduced transformative
solutions, including molecular diagnostics, spectroscopic techniques, and artificial
intelligence-powered imaging systems. Molecular methods such as polymerase chain reaction,
loop-mediated isothermal amplification, and CRISPR-based assays enable rapid and precise
pathogen detection at the genetic level. Meanwhile, non-destructive technologies like near-
infrared spectroscopy and hyperspectral imaging capture biochemical and morphological
changes in produce, allowing for real-time monitoring. AI and machine learning further
enhance these approaches by automating disease recognition through deep learning models
such as convolutional neural networks, improving accuracy and scalability. This review
comprehensively examines these innovations, discussing their principles, applications,
advantages, and current limitations. Additionally, it explores future trends, including the
integration of multi-modal detection systems and edge computing for on-site diagnostics. By
leveraging these cutting-edge technologies, the agricultural sector can significantly reduce
post-harvest losses, enhance food safety, and optimize supply chain efficiency.
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INTRODUCTION
Food security remains a critical global challenge, with post-harvest losses due to microbial
spoilage, fungal infections, and physiological deterioration accounting for an estimated 20–50% of
perishable crops worldwide (Taha et al., 2025). These losses not only reduce the availability of
nutritious food but also contribute to significant economic waste, particularly in developing regions
where storage and transportation infrastructure are inadequate. The primary culprits of post-
harvest decay include fungal pathogens such as Botrytis cinerea, Penicillium expansum, and
Aspergillus flavus, as well as bacterial and viral agents that thrive in storage conditions (González-
Rodríguez et al., 2024). Traditional methods for detecting these pathogens—such as visual
inspection, culturing on selective media, and biochemical assays—are often labor-intensive, time-
consuming, and limited in sensitivity. Moreover, these techniques frequently fail to identify
infections at early stages when interventions could still mitigate damage (Petcu et al., 2024).

The growing demand for sustainable food systems has driven the development of innovative
diagnostic tools that offer rapid, accurate, and non-destructive detection of post-harvest diseases.
Among these, molecular diagnostics—including polymerase chain reaction, quantitative PCR, loop-
mediated isothermal amplification, and CRISPR-based systems—have revolutionized pathogen
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identification by enabling high-throughput, species-specific detection at the genomic level (Yuan et
al., 2022; Mellikeche et al., 2024; Vo and Trinh, 2025). These methods significantly reduce
diagnostic time while improving precision compared to conventional techniques (Hasanaliyeva et
al., 2022). Parallel advancements in optical sensing technologies, such as near-infrared
spectroscopy and hyperspectral imaging, allow for real-time, non-invasive monitoring of produce by
detecting subtle biochemical and structural changes associated with disease (Zhang et al., 2019).

Perhaps the most transformative development in recent years has been the integration of artificial
intelligence and machine learning into post-harvest disease detection (Yan et al., 2023). Deep
learning algorithms, particularly convolutional neural networks, can analyze vast datasets from
imaging and spectral sensors to classify disease symptoms with high accuracy (Nikzadfar et al.,
2024). AI-powered systems are increasingly being deployed in smart storage facilities, where they
combine environmental data (e.g., temperature, humidity) with real-time imaging to predict and
prevent outbreaks (Botero-Valencia et al., 2025). Despite these advancements, challenges remain in
making these technologies accessible to small-scale farmers and integrating them into existing
supply chains (Ali et al., 2025). This review explores the evolution of post-harvest disease detection,
from foundational molecular techniques to next-generation AI-driven solutions, while addressing
current limitations and future opportunities for reducing global food waste.

MOLECULAR DIAGNOSTICS IN POST-HARVEST
DISEASE DETECTION
The advent of molecular diagnostics has revolutionized post-harvest disease detection by enabling
precise, rapid, and sensitive identification of pathogens at the genetic level. These techniques have
largely supplanted traditional culture-based methods by offering species-specific detection, even in
latent or early-stage infections where visual symptoms are absent. Among the most impactful
molecular tools are polymerase chain reaction (PCR)-based methods, isothermal amplification
techniques like LAMP, and the emerging CRISPR-based detection systems, each offering unique
advantages for different post-harvest applications (Khadiri et al., 2024).

Polymerase Chain Reaction (PCR) and Quantitative PCR (qPCR)

PCR and its quantitative counterpart (qPCR) remain gold-standard methods for detecting post-
harvest pathogens due to their exceptional sensitivity and specificity. These techniques amplify
target DNA sequences unique to pathogens, allowing for the identification of fungal species like
Botrytis cinerea (gray mold) in berries or Penicillium digitatum (citrus green mold) at
concentrations as low as a few femtograms (Kabir et al., 2020). qPCR further enhances this
capability by providing real-time quantification of pathogen load through fluorescent probes,
enabling not just detection but also assessment of infection severity (Chen et al., 2022). For
instance, qPCR assays targeting the β-tubulin gene of Colletotrichum species have been
successfully used to monitor anthracnose development in mangoes during storage (Radomirović et
al., 2025). However, these methods require sophisticated thermocycling equipment, DNA extraction
protocols, and skilled personnel, limiting their use in field settings. Recent innovations like portable
PCR systems and rapid DNA extraction kits are helping bridge this gap, making molecular
diagnostics more accessible for point-of-need testing in packinghouses and storage facilities (Vo
and Trinh, 2025).

Loop-Mediated Isothermal Amplification (LAMP)

LAMP has emerged as a powerful alternative to PCR, particularly for decentralized post-harvest
disease monitoring. Unlike PCR, which requires thermal cycling, LAMP operates at a constant
temperature (60–65°C) and can amplify DNA with high efficiency using just a heating block or
water bath (Aglietti et al., 2024). This simplicity, combined with visual readouts (e.g., color changes
from fluorescent dyes or turbidity), makes LAMP ideal for field applications. For example, LAMP
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assays targeting the polygalacturonase gene of Aspergillus flavus can detect aflatoxin-producing
strains in peanuts within 30 min, significantly faster than traditional culturing (Mellikeche et al.,
2024). Similarly, LAMP-based kits for Fusarium species in grains enable rapid on-site screening to
prevent mycotoxin contamination during storage (Liu et al., 2022). Despite these advantages, LAMP
can suffer from non-specific amplification if primer design is suboptimal, and its multiplexing
capability (detecting multiple pathogens simultaneously) remains inferior to qPCR. Ongoing
improvements in primer design and the integration of portable fluorescence detectors are
addressing these limitations, expanding LAMP’s utility in post-harvest pathogen surveillance (Bani
et al., 2024).

CRISPR-Based Detection

The CRISPR-Cas system, renowned for its gene-editing capabilities, has been repurposed into a
groundbreaking diagnostic tool for post-harvest diseases. Platforms like SHERLOCK (Specific High-
sensitivity Enzymatic Reporter unLOCKing) and DETECTR (DNA Endonuclease Targeted CRISPR
Trans Reporter) utilize CRISPR-associated enzymes (e.g., Cas12, Cas13) to cleave pathogen-specific
nucleic acids, triggering fluorescent or lateral flow signals for easy interpretation (Xie et al., 2024).
These systems combine the sensitivity of PCR with the simplicity of lateral flow tests, enabling
ultrasensitive detection without complex instrumentation. For instance, CRISPR-Cas12 assays have
been developed to identify Phytophthora infestans (potato late blight) in stored tubers with 10-fold
greater sensitivity than conventional PCR (Yuan et al., 2022). Another breakthrough is the
detection of Xanthomonas species in citrus fruits using CRISPR-based lateral flow strips, which
provide results in under an hour with minimal training required. While CRISPR diagnostics are still
in the early stages of commercialization, their potential for low-cost, high-accuracy field-testing is
immense (Son, 2024). Current challenges include optimizing sample preparation for complex
produce matrices and ensuring stability of reagents in varying climates—hurdles that are being
actively addressed through lyophilized reagent formulations and integrated microfluidic devices
(Farinati et al., 2024).

Synthesis and Future Directions

Molecular diagnostics have undeniably transformed post-harvest disease management, yet each
technique presents a trade-off between accuracy, speed, and deployability. While PCR/qPCR
remains the benchmark for lab-based confirmation, LAMP and CRISPR are paving the way for
decentralized testing. Future innovations may focus on integrating these methods with automated
sample processing and IoT-enabled devices to create end-to-end diagnostic systems for smart
agriculture (Hernandez-Montiel et al., 2021). For example, combining LAMP’s speed with CRISPR’s
specificity could yield next-generation assays for simultaneous detection of multiple pathogens in
stored crops (Zhang et al., 2019; Hasanaliyeva et al., 2022). As these technologies mature, their
adoption will hinge on cost reduction, user-friendly design, and validation across diverse crops and
storage conditions—key steps toward minimizing global post-harvest losses (Hasanaliyeva et al.,
2022; Moradinezhad and Ranjbar, 2023).

SPECTROSCOPY AND HYPERSPECTRAL IMAGING IN
POST-HARVEST DISEASE DETECTION
The limitations of traditional destructive testing methods have driven significant innovation in
optical sensing technologies for post-harvest quality control. Spectroscopy and hyperspectral
imaging represent a paradigm shift in disease detection, offering rapid, non-contact, and non-
destructive analysis of produce by capturing the unique biochemical fingerprints associated with
pathogen infection (García-Vera et al., 2024). These techniques leverage the interaction between
light and matter to detect subtle physiological changes that precede visible symptoms, enabling
early intervention to prevent spoilage spread in storage facilities (Wan et al., 2022).
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Near-Infrared (NIR) and Raman Spectroscopy

NIR spectroscopy (750-2500 nm) has emerged as a powerful tool for post-harvest disease
management due to its ability to probe molecular vibrations of C-H, O-H, and N-H bonds in organic
compounds. This technique detects disease-induced changes in carbohydrate, protein, and water
content that occur during pathogen colonization (Yan et al., 2023). For instance, NIR has
successfully differentiated sound and Fusarium-infected wheat kernels with >90% accuracy by
identifying characteristic spectral shifts at 1200 nm and 1450 nm associated with starch
degradation (Sohn et al., 2021). Portable NIR devices are now being integrated into sorting lines to
automatically reject infected apples showing early signs of Penicillium rot based on their altered
spectral profiles (Kasampalis et al., 2024).

Raman spectroscopy complements NIR by providing molecular specificity through inelastic
scattering of monochromatic light. Its ability to detect vibrational modes of specific functional
groups makes it particularly valuable for identifying fungal metabolites and toxins (Saletnik et al.,
2024). Recent studies have demonstrated Raman’s capability to detect Aspergillus flavus
contamination in maize kernels at aflatoxin concentrations as low as 10 ppb by tracking signature
peaks of fungal ergosterol at 1602 cm-¹ (Yan et al., 2023). While traditionally limited by weak
signals, advancements in surface-enhanced Raman spectroscopy (SERS) using nanoparticle
substrates have improved sensitivity by 10⁶-fold, enabling detection of single bacterial cells in
produce wash water (Huang et al., 2025).

Hyperspectral Imaging (HSI)

HSI represents the convergence of spectroscopy and digital imaging, providing both spatial and
spectral information across hundreds of contiguous wavelength bands. This technology creates
chemical maps of produce surfaces where disease symptoms manifest first (García-Vera et al.,
2024). In wheat, HSI in the 400-1000 nm range can distinguish harmless stem scars from early
decay lesions caused by Fusarium pseudograminearum by analyzing chlorophyll absorption
features at 675 nm and water content variations at 970 nm (Xie et al., 2021). Modern systems
capture this data at speeds exceeding 100 fruits per minute, making the technology viable for
commercial packing operations (Nikzadfar et al., 2024).

The true power of HSI emerges when combined with machine learning. Deep learning algorithms
trained on spectral libraries can automatically classify multiple disease states in stored potatoes by
recognizing complex patterns across spectral bands (Vignati et al., 2023). For example,
convolutional neural networks processing 240-band HSI data achieve 97% accuracy in
discriminating between late blight and dry rot infections based on their distinct spectral signatures
in the 1000-2500 nm range. Recent innovations include portable HSI cameras that connect to
smartphones, enabling real-time field diagnostics by comparing crop spectra against cloud-based
disease databases (García-Vera et al., 2024; Nikzadfar et al., 2024).

Implementation Challenges and Future Outlook

While spectroscopic methods show tremendous promise, several barriers hinder widespread
adoption (García-Vera et al., 2024). NIR systems struggle with moisture interference in high-
humidity storage environments, while Raman requires careful calibration to avoid fluorescence
background in pigmented produce (Kasampalis et al., 2024). HSI faces data dimensionality
challenges, with single scans generating terabytes of information that demand sophisticated
compression algorithms for practical use (García-Vera et al., 2024). Emerging solutions include:

• Hybrid systems combining NIR and Raman for cross-validated results.

• On-chip spectral sensors that reduce HSI system costs.
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• Edge computing devices that preprocess spectral data before cloud transmission.

The next generation of spectroscopic tools will likely integrate with blockchain systems to create
immutable quality records throughout the supply chain. As these technologies become more
affordable and user-friendly, they will transform post-harvest disease management from reactive to
predictive, potentially reducing global food losses by 30-40% in the coming decade (Huang et al.,
2025). Future research should focus on developing universal spectral libraries for major crop-
pathogen combinations and optimizing systems for use in developing country contexts where post-
harvest losses are most severe.

AI AND MACHINE LEARNING IN POST-HARVEST
DISEASE DETECTION
The integration of artificial intelligence (AI) and machine learning (ML) has revolutionized post-
harvest disease detection by enabling automated, high-throughput, and increasingly precise
identification of pathological conditions in stored crops (Botero-Valencia et al., 2025). These
advanced computational approaches are transforming traditional quality control paradigms from
subjective human visual inspection to objective, data-driven decision systems capable of detecting
subtle disease indicators long before they become visible to the naked eye (Ngugi et al., 2024). The
synergy between AI algorithms and modern sensor technologies is creating smart detection
systems that not only identify existing infections but also can predict disease outbreaks based on
environmental and physiological parameters, fundamentally changing how we approach post-
harvest management (González-Rodríguez et al., 2024; Ali et al., 2025).

Deep Learning for Image Analysis

Deep learning architectures, particularly convolutional neural networks (CNNs), have
demonstrated remarkable success in analyzing visual data for disease detection (Wang et al., 2025).
These algorithms excel at extracting hierarchical features from images, enabling them to
distinguish between healthy tissue and various disease manifestations with human-level or superior
accuracy. Modern implementations use multi-spectral imaging systems coupled with deep learning
to detect early fungal infections in apples by identifying subtle changes in surface texture and
spectral reflectance patterns that precede visible rot (Lee et al., 2023). For instance, a ResNet-50
architecture trained on 50,000 images of citrus fruits achieved 98.7% accuracy in differentiating
between harmless blemishes and early citrus canker lesions, a task that even experienced graders
struggle. Transfer learning approaches, where pre-trained models like VGG16 or EfficientNet are
fine-tuned with smaller agricultural datasets, have proven particularly effective in overcoming data
scarcity challenges common in post-harvest applications (Lee et al., 2024; Wang et al., 2025).
Recent innovations include 3D CNN models that analyze temporal sequences of produce images to
track disease progression in stored potatoes, enabling dynamic risk assessment throughout the
storage period (Petcu et al., 2024). However, these systems face challenges including the need for
large, diverse training datasets that account for varietal differences, environmental conditions, and
the full spectrum of possible disease presentations (Opara et al., 2024).

IoT and Smart Sensors

The Internet of Things (IoT) ecosystem in post-harvest management combines distributed sensor
networks with AI analytics to create responsive storage environments that actively prevent disease
outbreaks (Kiobia et al., 2023; Ali et al., 2025). Modern smart warehouses deploy arrays of wireless
sensors that continuously monitor critical parameters including temperature, humidity, ethylene
concentration, CO₂ levels, and volatile organic compounds (VOCs) that serve as early chemical
markers of pathogen activity (Tekeste et al., 2024). For example, metal-oxide semiconductor
sensors can detect specific VOC fingerprints emitted by Fusarium-infected grains at concentrations
as low as 1 ppm, triggering ventilation systems before visible mold appears. Edge AI devices
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installed directly in storage facilities process this sensor data in real-time using lightweight
machine learning models, enabling immediate response without cloud dependency (Mahapatro et
al., 2024; Platero-Horcajadas et al., 2024). A notable implementation involves piezoelectric sensors
that detect the acoustic signatures of insect activity in stored grains, with recurrent neural
networks (RNNs) classifying species based on their unique feeding vibrations (Orchi et al., 2022).
The integration of blockchain technology with these IoT systems creates immutable records of
storage conditions and quality assessments throughout the supply chain, enhancing traceability and
compliance (Masood et al., 2023). Current research focuses on developing self-powered sensors
using energy harvesting technologies and federated learning approaches that allow multiple
facilities to collaboratively improve disease prediction models without sharing sensitive operational
data (Nauman et al., 2023; Wang et al., 2025).

Implementation Challenges and Future Directions

While AI-driven systems offer tremendous potential, several technical and practical hurdles must be
addressed for widespread adoption. The black-box nature of many deep learning models creates
trust barriers among growers and regulators, prompting research into explainable AI techniques
that provide interpretable decision rationales (Ali et al., 2025). Energy requirements for continuous
IoT operation in remote storage locations drive innovation in low-power chips and energy
harvesting solutions (Tekeste et al., 2024). Perhaps most critically, the development of standardized
protocols for data collection and model validation across different crops and storage conditions
remains an ongoing challenge (Wang et al., 2025). Future systems will likely incorporate digital
twin technology, creating virtual replicas of storage facilities that simulate disease spread under
various conditions to optimize intervention strategies. As 5G networks expand, real-time
holographic imaging combined with AI analysis may enable remote quality assessment of stored
crops with unprecedented detail. The convergence of these technologies promises to transform post-
harvest disease management from a reactive process to a predictive, precision science capable of
dramatically reducing global food losses while improving safety and quality throughout the supply
chain (Petcu et al., 2024).

CHALLENGES AND FUTURE PERSPECTIVES IN POST-
HARVEST DISEASE DETECTION TECHNOLOGIES
The remarkable advancements in post-harvest disease detection technologies, while transformative,
face several critical challenges that must be addressed to achieve widespread adoption and
maximize their impact on global food security (Yuan et al., 2024). Current limitations span
technical, economic, and implementation barriers that hinder the transition from research
prototypes to practical, scalable solutions (Palumbo et al., 2022). One of the most pressing
technical challenges lies in the variability of produce characteristics across different cultivars,
growing conditions, and storage environments, which can significantly affect the accuracy of both
molecular and imaging-based detection systems (Hasanaliyeva et al., 2022). For instance, spectral
signatures used in hyperspectral imaging may vary substantially between apple varieties, requiring
extensive recalibration of machine learning models for different agricultural contexts (Wang et al.,
2025). Similarly, molecular diagnostic techniques often struggle with inhibitor compounds present
in certain produce that interfere with DNA amplification, necessitating the development of more
robust sample preparation methods (Fang and Ramasamy, 2015). The high computational
requirements of advanced AI algorithms also pose practical constraints, particularly in resource-
limited settings where access to high-performance computing infrastructure is limited (Lebrini and
Ayerdi Gotor, 2024; Khan et al., 2025). Economic barriers are equally significant, as many cutting-
edge detection systems remain prohibitively expensive for small-scale farmers and developing
economies where post-harvest losses are most acute (Portela et al., 2024).

Looking toward the future, several promising directions emerge to overcome these challenges and
enhance the effectiveness of post-harvest disease management systems (Buja et al., 2021). The
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integration of multi-modal detection approaches that combine the strengths of molecular
diagnostics, spectroscopic analysis, and AI-powered imaging represents a particularly promising
avenue (Taha et al., 2025). Such hybrid systems could leverage nucleic acid detection for specific
pathogen identification while using hyperspectral imaging for rapid, non-destructive screening of
large produce volumes (Ljubobratović et al., 2022). Advances in edge computing and miniaturized
sensor technologies are paving the way for truly portable diagnostic devices that can perform
complex analyses directly in storage facilities or packing houses without requiring specialized
laboratory infrastructure (Cano Marchal et al., 2021). The development of standardized, crop-
specific spectral libraries and molecular marker databases would significantly reduce the
calibration burden for new implementations, while federated learning approaches could enable
continuous improvement of AI models across different facilities without compromising data privacy
(Zhang et al., 2020; Taha et al., 2025). Another critical future direction involves the creation of
closed-loop systems that not only detect diseases but also automatically trigger appropriate
interventions, such as targeted antifungal treatments or adjusted storage conditions (Silva et al.,
2025). Perhaps most importantly, future research must focus on making these technologies more
accessible through cost-reduction strategies, simplified user interfaces, and localized training
programs to ensure they reach the stakeholders who need them most (Orchi et al., 2023; He et al.,
2025). As these innovations mature, they hold the potential to transform post-harvest management
from a reactive process to a predictive, precision-based system capable of dramatically reducing
global food waste while improving food safety and quality throughout the supply chain
(Nturambirwe et al., 2021). The coming decade will likely see these technologies move from
experimental settings to widespread commercial implementation, provided that researchers,
industry stakeholders, and policymakers collaborate to address the existing barriers to adoption
(Ouhami et al., 2021).

CONCLUSIONS
Post-harvest diseases remain a formidable challenge to global food security, contributing to
substantial economic losses and decreased nutritional availability, particularly in developing
regions where storage infrastructure is limited. However, the past decade has witnessed
remarkable advancements in detection technologies that are transforming how we identify and
manage post-harvest pathogens. Molecular diagnostics, including PCR, LAMP, and CRISPR-based
systems, have enabled rapid, sensitive, and specific pathogen detection at the genetic level,
overcoming many limitations of traditional culturing methods. Meanwhile, spectroscopic techniques
such as NIR and hyperspectral imaging provide non-destructive, real-time monitoring of
biochemical changes in produce, facilitating early disease identification before visible symptoms
appear. The integration of artificial intelligence and machine learning has further enhanced these
approaches, automating disease recognition through deep learning models and enabling predictive
analytics via IoT-enabled smart storage systems. These innovations collectively represent a
paradigm shift from reactive to proactive post-harvest management, with the potential to
significantly reduce food waste and improve supply chain efficiency.

Despite these advancements, challenges remain in making these technologies universally
accessible, particularly for smallholder farmers and low-resource settings. Issues such as high
costs, technical complexity, and the need for crop-specific calibration must be addressed to ensure
equitable adoption. Future research should focus on developing affordable, user-friendly devices
that combine multiple detection modalities—such as molecular assays with spectral imaging—while
leveraging edge computing for real-time decision-making in the field. Additionally, the creation of
open-access databases for pathogen signatures and standardized protocols will be crucial for
widespread implementation. As these technologies mature, their integration with blockchain for
traceability and digital agriculture platforms for holistic farm-to-table quality control will further
enhance their impact. The continued collaboration between researchers, industry stakeholders, and
policymakers will be essential to translate these innovations into practical solutions that benefit the
entire food supply chain. By harnessing the power of modern diagnostics, AI-driven analytics, and
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smart storage technologies, the agricultural sector can move closer to achieving sustainable food
systems with minimized post-harvest losses, ensuring food security for future generations.

Ultimately, the fight against post-harvest diseases is not just a technological challenge but a global
imperative. The innovations discussed in this review—from portable molecular tools to AI-powered
imaging systems—demonstrate that solutions are within reach. With concerted effort and
investment, these cutting-edge technologies can be scaled to create a transformative impact,
reducing waste, improving food safety, and securing the global food supply in an era of climate
uncertainty and growing population demands. The future of post-harvest management lies in smart,
precise, and accessible detection systems, and the progress made thus far provides a strong
foundation for the road ahead.
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